
Simulink and Advanced
Topics in MATLAB

Hans-Petter Halvorsen

https://www.halvorsen.blog

Simulink and Advanced
Topics in MATLAB

University of South-Eastern Norway

MATLAB
Simulink and Advanced Topics

Hans-Petter Halvorsen, 2022.08.17

http://www.halvorsen.blog

http://www.halvorsen.blog/

ii

Preface

Copyright You cannot distribute or copy this document without

permission from the author. You cannot copy or link to this document

directly from other sources, web pages, etc. You should always link to the

proper web page where this document is located, typically

http://www.halvorsen.blog

In this MATLAB Course, you will learn basic MATLAB and how to use

MATLAB in Control and Simulation applications. An introduction to

Simulink and other Tools will also be given.

MATLAB is a tool for technical computing, computation and visualization in

an integrated environment. MATLAB is an abbreviation for MATrix

LABoratory, so it is well suited for matrix manipulation and problem

solving related to Linear Algebra, Modelling, Simulation and Control

applications.

This is a self-paced course based on this document and some short videos

on the way. This document contains lots of examples and self-paced tasks

that the users will go through and solve on their own. The user may go

through the tasks in this document in their own pace and the instructor

will be available for guidance throughout the course.

The MATLAB Course consists of 3 parts:

1. Introduction to MATLAB

2. Modelling, Simulation and Control

3. Simulink and Advanced Topics

In Part 3 of the course, you will learn how to use some of the more

advanced features in MATLAB. We will also take a closer look at Simulink,

which is a Block Diagram Simulation Tool used together with MATLAB. We

will also give an overview to other tools for numerical mathematics and

simulation.

You must go through MATLAB Course – Part 1: Introduction to MATLAB

before you start.

http://www.halvorsen.blog/

iii

The course consists of lots of Tasks you should solve while reading this

course manual and watching the videos referred to in the text.

 Make sure to bring your headphones for the videos in this

course. The course consists of several short videos that will give you an

introduction to the different topics in the course.

Prerequisites: You should be familiar with undergraduate-level

mathematics and have experience with basic computer operations.

What is MATLAB?

MATLAB is a tool for technical computing, computation, and visualization

in an integrated environment. MATLAB is an abbreviation for MATrix

LABoratory, so it is well suited for matrix manipulation and problem

solving related to Linear Algebra.

MATLAB is developed by The MathWorks. MATLAB is a short-term for

MATrix LABoratory. MATLAB is in use world-wide by researchers and

universities.

For more information, see www.mathworks.com

What is Simulink?

MATLAB offers lots of additional Toolboxes for different areas such as

Control Design, Image Processing, Digital Signal Processing, etc.

Simulink, developed by The MathWorks, is a commercial tool for modeling,

simulating and analyzing dynamic systems. Its primary interface is a

graphical block diagramming tool and a customizable set of block libraries.

It offers tight integration with the rest of the MATLAB environment and

can either drive MATLAB or be scripted from it. Simulink is widely used in

control theory and digital signal processing for simulation and design.

This training will give you the basic knowledge of Simulink and how you

can use it together with MATLAB.

For more information about MATLAB, Simulink, etc., please visit

http://www.halvorsen.blog

http://www.mathworks.com/
http://www.halvorsen.blog/

iv

Online MATLAB Resources:

MATLAB:

http://www.halvorsen.blog/documents/programming/matlab/

MATLAB Basics:

http://www.halvorsen.blog/documents/programming/matlab/matlab_basics.php

Modelling, Simulation and Control with MATLAB:

http://www.halvorsen.blog/documents/programming/matlab/matlab_mic.php

MATLAB Videos:

http://www.halvorsen.blog/documents/video/matlab_basics_videos.php

MATLAB for Students:

http://www.halvorsen.blog/documents/teaching/courses/matlab.php

On these web pages you find video solutions, complete step by step

solutions, downloadable MATLAB code, additional resources, etc.

http://www.halvorsen.blog/documents/programming/matlab/
http://www.halvorsen.blog/documents/programming/matlab/matlab_basics.php
http://www.halvorsen.blog/documents/programming/matlab/matlab_mic.php
http://www.halvorsen.blog/documents/video/matlab_basics_videos.php
http://www.halvorsen.blog/documents/teaching/courses/matlab.php

v

Table of Contents

Preface .. ii

Table of Contents.. v

1 Introduction ... 1

2 Simulink .. 2

2.1 Start using Simulink ... 2

2.1.1 Block Libraries ... 4

2.1.2 Create a new Model .. 6

2.2 Wiring techniques .. 7

2.3 Help Window ... 8

2.4 Configuration .. 10

2.5 Examples .. 11

Task 1: Simulation in Simulink – Bacteria Population 20

2.6 Data-driven Modelling .. 21

2.6.1 Using the Command window .. 21

2.6.2 Using a m-file .. 24

2.6.3 Simulation Commands .. 25

Task 2: Mass-Spring-Damper System .. 26

Task 3: Simulink Simulation ... 29

3 Debugging in MATLAB .. 30

3.1 The Debugging Process .. 32

Task 4: Debugging .. 33

4 More about Functions .. 35

vi Table of Contents

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

4.1 Getting the Input and Output Arguments 35

Task 5: Create a Function .. 36

Task 6: Optional Inputs: Using nargin and nargchk 37

Task 7: Optional Outputs: Using nargout and nargoutchk 38

5 More about Plots ... 39

5.1 LaTEX or TEX Commands .. 39

Task 8: LATEX Commands ... 40

Task 9: 3D Plot ... 40

6 Using Cells in the MATLAB Editor ... 42

Task 10: Using Cells ... 43

7 Importing Data ... 44

Task 11: Import Data ... 46

8 Structures and Cell Arrays .. 47

8.1 Structures... 47

Task 12: Using Structures ... 48

9 Alternatives to MATLAB .. 49

9.1 Octave ... 49

9.2 Scilab and Scicos ... 49

9.3 LabVIEW MathScript... 50

9.3.1 How do you start using MathScript? 51

9.3.2 Functions .. 52

9.3.3 ODE Solvers in MathScript ... 53

9.4 LabVIEW... 54

9.4.1 The LabVIEW Environment .. 54

9.4.2 Front Panel .. 55

9.4.3 Block Diagram ... 58

vii Table of Contents

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

9.4.4 LabVIEW Control Design and Simulation Module................. 59

9.5 Mathematics in LabVIEW .. 63

9.5.1 Basic Math .. 64

9.5.2 Linear Algebra ... 65

9.5.3 Curve Fitting.. 66

9.5.4 Interpolation ... 67

9.5.5 Integration and Differentiation ... 67

9.5.6 Statistics ... 68

9.5.7 Optimization .. 68

9.5.8 Differential Equations (ODEs) .. 69

9.5.9 Polynomials ... 69

9.6 MATLAB Integration (MATLAB Script) in LabVIEW 70

9.7 Python ... 71

Appendix A – MathScript Functions ... 73

Appendix B: Mathematics characters ... 75

1

1 Introduction

Additional Resources, Videos, etc. are available from:

http://www.halvorsen.blog/documents/programming/matlab

Part 3: Advanced Topics, Simulink and other Tools consists of the

following topics:

• Introduction to Simulink

• Advanced Topics in MATLAB:

o Debugging in MATLAB

o More about functions

o More about Plots

o Using Cells in the MATLAB Editor

o Importing Data

o Structures and Cell Arrays

• Alternatives to MATLAB

http://www.halvorsen.blog/documents/programming/matlab

2

2 Simulink

Simulink is an environment for simulation and model-based design for

dynamic and embedded systems. It provides an interactive graphical

environment and a customizable set of block libraries that let you design,

simulate, implement, and test a variety of time-varying systems, including

communications, controls, signal processing, video processing, and image

processing.

Simulink offers:

• A quick way of developing your model in contrast to text based-

programming language such as e.g., C.

• Simulink has integrated solvers. In text based-programming

language such as e.g., C you need to write your own solver.

Graphical Programming: In Simulink you program in a graphical way.

LabVIEW is another programming language where you use graphical

programming instead of text-based programming. LabVIEW is developed

by National Instruments. You will use LabVIEW in a later chapter

 Before you start, you should watch the following videos:

• “Simulink Overview”

• “Getting Started with Simulink”

The videos are available from:

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3.php

2.1 Start using Simulink

You start Simulink from the MATLAB IDE:

Open MATLAB and select the Simulink icon in the Toolbar:

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3.php

3 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Or type “simulink” in the Command window, like this:

Then the following window appears (Simulink Library Browser):

4 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

The Simulink Library Browser is the library where you find all the

blocks you may use in Simulink. Simulink software includes an extensive

library of functions commonly used in modeling a system. These include:

• Continuous and discrete dynamics blocks, such as Integration,

Transfer functions, Transport Delay, etc.

• Math blocks, such as Sum, Product, Add, etc

• Sources, such as Ramp, Random Generator, Step, etc

2.1.1 Block Libraries

Here are the most used “Continuous” Blocks:

5 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Here are some commonly used “Math Operations” Blocks:

Here are some commonly used “Signal Routing” Blocks:

Here are some commonly used “Sinks” Blocks:

Here are some commonly used “Sources” Blocks:

6 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

In addition, there are lots of block in different Toolboxes:

2.1.2 Create a new Model

Click the New icon on the Toolbar in order to create a new Simulink

model:

The following window appears:

7 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

You may now drag the blocks you want to use from the Simulink Library

Browser to the model surface (or right-click on a block and select “Add

to…”).

Example:

In this example we place (drag and drop) to blocks, a Sine Wave and a

Scope, on the model surface:

2.2 Wiring techniques

Use the mouse to wire the inputs and outputs of the different blocks.

Inputs are located on the left side of the blocks, while outputs are located

on the right side of the blocks.

8 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

When holding the mouse over an input or an output the mouse changes to

the following symbol.

Use the mouse, while holding the left button down, to drag wires from the

input to the output.

Automatic Block Connection:

Another wiring technique is to select the source block, then hold down the

Ctrl key while left-clicking on the destination block.

Try the different techniques on the example above.

Connection from a wire to another block

If wire a connection from a wire to another block, like the example below,

you need to hold down the Ctrl key while left-clicking on the wire and

then to the input of the desired block.

2.3 Help Window

To see detailed information about the different blocks, use the built-in

Help system.

9 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

All standard blocks in Simulink have detailed Help. Click the Help button in

the Block Parameter window for the specific block to get detailed help for

that block.

The Help Window then appears with detailed information about the

selected block:

10 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

2.4 Configuration

There are lots of parameters you may want to configure regarding your

simulation. Select “Configuration Parameters…” in the Simulation menu.

The following window appears:

11 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Here you set important parameters such as:

• Start and Stop time for the simulation

• What kind of Solver to be used (ode45, ode23 etc.)

• Fixed-step/Variable-step

Note! Each of the controls on the Configuration Parameters dialog box

corresponds to a configuration parameter that you can set via the “sim”

and “simset” commands. You will learn more about these commands

later.

Solvers are numerical integration algorithms that compute the system

dynamics over time using information contained in the model. Simulink

provides solvers to support the simulation of a broad range of systems,

including continuous-time (analog), discrete-time (digital), hybrid (mixed-

signal), and multirate systems of any size.

2.5 Examples

Below we will go through some examples in order to illustrate how to

create block diagrams and related functionality.

Example:

Integrator with initial value

12 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Create the following model (an integrator) and run the simulation:

Step1: Place the blocks on the model surface

This example uses the following blocks:

Step 2: Configuration

Double-click on the Integrator block. The Parameter window for the

Integrator block appears:

13 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Select “Initial condition source=external”. The Integrator block now

looks like this:

Double-click on the Constant block. The Parameter window for the

Constant block appears:

14 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

In the Constant value field we type in the initial value for the integrator,

e.g., type the value 1.

Step 3: Wiring

Use the mouse to wire the inputs and outputs of the different blocks.

When holding the mouse over an input or an output the mouse change to

the following symbol.

Draw a wire between the output on the Constant block to the lower input

in the Integrator block, like this:

15 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

You could also do like this:

Wire the rest of the blocks together and you will get the following

diagram:

Step 4: Simulation

Start the simulation by clicking the “Start Simulation” icon in the Toolbar:

Step 5: The Results

Double-click in the Scope block in order to see the simulated result:

16 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Example:

Sine Wave

Create the block diagram as shown below:

Set the following parameter for the Integrator block:

17 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

The result should be like this:

Example:

Using vectors

18 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Create the following block diagram:

For the Gain block, type the following parameters:

As you see, we can use standard MATLAB syntax to create a vector.

If you want to see the signal dimensions, select “Signal Dimensions” and

“Wide Nonscalar Lines” as shown here:

19 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

The block diagram should now look like this:

The thick lines indicate vectors, while the number (8) is the size of the

vector.

Let’s change the Saturation block:

20 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

As you see you may use standard MATLAB functions and syntax.

Run the simulation and see the results in the Scope block.

Task 1: Simulation in Simulink – Bacteria Population

In this task we will simulate a simple model of a bacteria population in a

jar (known from a previous task).

The model is as follows:

birth rate = bx

death rate = px2

Then the total rate of change of bacteria population is:

�̇� = 𝑏𝑥 − 𝑝𝑥2

Set b=1/hour and p=0.5 bacteria-hour

 We will simulate the number of bacteria in the jar after 1 hour, assuming

that initially there are 100 bacteria present.

Procedure:

1. Create the block diagram for the system using “pen & paper”

21 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

2. Start Simulink and create a New Model

3. Drag in the necessary blocks from the Simulink Library Browser

4. Configure the different blocks (double-click/right-click depending

on what you need). Some blocks need to be “flipped” (Right-click →

Format → Flip Block), while in other blocks you need to set a value

(double-click)

5. Draw lines between the different blocks using the mouse

6. Set Simulation Settings (Simulation → Configuration Parameters).

The simulation Time (Stop Time) should be set to 1 (hour)

7. Use a Scope to see the Simulated Result

You will need the following blocks:

• Integrator block To solve the differential equation. Note!

Initial value x0=100

• Two Gain blocks For p (=0.5) and b (=1)

• Product block To compute x2

• Sum block Note! One plus (+) must be changed to minus (-)

• Scope block To show the simulated result. Note! Set to

Autoscale

[End of Task]

2.6 Data-driven Modelling

You may use Simulink together with MATLAB to specify data and

parameters to your Simulink model. You may specify commands in the

MATLAB Command Window or as commands in an m-file. This is called

data-driven modeling.

2.6.1 Using the Command window

Example:

Given the following system:

22 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Note! In order to get 3 inputs on the Scope block:

Double-click on the Scope and select the Parameters icon in the Toolbar:

Then select Number of Axes=3:

Configure the zero-order hold blocks like this:

23 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Write the following in the Command window in MATLAB:

Run the Simulink model from the Simulink:

24 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

We then get the following results:

2.6.2 Using a m-file

It is good practice to build your model in Simulink and configure and run

the simulation from a MATLAB m-file.

A Typical m-file could look like this:

25 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

You use the simset command to configure your simulation parameters

and the sim command to run the simulation.

The variables you refer to in the m-file is set in the Constant value field in

the Parameter window for each block.

2.6.3 Simulation Commands

26 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

The most used command is:

• simset

• sim

Use these commands if you configure and run your Simulink model from a

m-file.

Example:

%Simulator Settings

t_stop=100; %[s]

T_s=t_stop/1000; %[s]

options=simset('solver', 'ode5', 'fixedstep', T_s);

%Starting simulation

sim('mass_spring_damper', t_stop, options);

[End of Example]

Task 2: Mass-Spring-Damper System

In this example we will create a mass-spring-damper model in Simulink

and configure and run the simulation from a MATLAB m-file.

In this exercise you will construct a simulation diagram that represents

the behavior of a dynamic system. You will simulate a spring-mass

damper system.

𝐹(𝑡) − 𝑐�̇�(𝑡) − 𝑘𝑥(𝑡) = 𝑚�̈�(𝑡)

where t is the simulation time, F(t) is an external force applied to the

system, c is the damping constant of the spring, k is the stiffness of the

spring, m is a mass, and x(t) is the position of the mass. �̇� is the first

derivative of the position, which equals the velocity of the mass. �̈� is the

second derivative of the position, which equals the acceleration of the

mass.

The following figure shows this dynamic system.

27 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

The goal is to view the position x(t) of the mass m with respect to time t.

You can calculate the position by integrating the velocity of the mass. You

can calculate the velocity by integrating the acceleration of the mass. If

you know the force and mass, you can calculate this acceleration by using

Newton's Second Law of Motion, given by the following equation:

Force = Mass × Acceleration

Therefore,

Acceleration = Force / Mass

Substituting terms from the differential equation above yields the

following equation:

�̈� =
1

𝑚
(𝐹 − 𝑐�̇� − 𝑘𝑥)

You will construct a simulation diagram that iterates the following steps

over a period of time.

→ Create the block diagram for the mass-spring-damper model above.

Instead of hard-coding the model parameters in the blocks you should

refer to them as variables set in an m-file.

28 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

These variables should be configured:

• x_init

• dxdt_init

• m=

• c=

• k

• t_step_F

• F_O

• F_1

m-File

The following variables should then be set in the m-file:

x_init=4; %[m]. Initial position.

dxdt_init=0; %[m/s]. Initial Speed.

m=20; %[kg]

c=4; %[N/(m/s)]

k=2; %[N/m]

t_step_F=50; %[s]

F_O=0; %[N]

F_1=4; %[N]

→ Create the model of the system in Simulink, and then create a m-file

where you specify model and simulation parameters. Then use the sim

function in order to run the simulation within the m-file.

[End of Task]

29 Simulink

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Task 3: Simulink Simulation

Given the autonomous system:

�̇� = 𝑎𝑥

where 𝑎 = −
1

𝑇
 ,where 𝑇 is the time constant

The solution for the differential equation is found to be:

𝑥(𝑡) = 𝑒𝑎𝑡𝑥0

Set 𝑇 = 5 and the initial condition 𝑥(0) = 1.

Simulate the system in Simulink where we plot the solution 𝑥(𝑡) in the

time interval 0 ≤ 𝑡 ≤ 25

[End of Task]

30

3 Debugging in MATLAB

Debugging is about different techniques for finding bugs (errors that make

your code not work as expected) in your code.

In all but the simplest programs, you are likely to encounter some type of

unexpected behavior when you run the program for the first time.

Program defects can show up in the form of warning or error messages

displayed in the command window, programs that hang (never

terminate), inaccurate results, or some number of other symptoms.

It is difficult to write code without errors (bugs), but MATLAB have

powerful Debugging functionality, similar to other tools like, e.g., Visual

Studio.

Why we call it debugging? They found a bug (actually a moth) inside a

computer in 1947 that made the program not behaving as expected. This

was the “first” real bug which was debugged.

Step 1: Removing Warnings and Errors notified by MATLAB

The first step in order to avoid errors is to remove all warnings and errors

notifies by MATLAB in the Editor. On the right side of the Editor there will

be shown symbols to illustrate that MATLAB have found potential errors in

your code.

 Warnings - Click the symbols to get more information about a

specific warning

Example:

31 Debugging in MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

 Errors - Click the symbols to get more information about a specific

error

Example:

→ Take necessary actions in order to remove these Errors and Warnings!

Step 2: Using Debugging Tools and Techniques in the MATLAB

Editor

In addition MATLAB have more sophisticated debugging tools we will learn

more about below. These are tools you use when your program is running.

Below we see the basic debugging functionality in MATLAB:

32 Debugging in MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

The MATLAB Debugger enables you to examine the inner workings of your

program while you run it. You can stop the execution of your program at

any point and then continue from that point, stepping through the code

line by line and examining the results of each operation performed. You

have the choice of operating the debugger from the Editor window that

displays your program, from the MATLAB command line, or both.

3.1 The Debugging Process

You can step through the program right from the start if you want. For

longer programs, you will probably save time by stopping the program

somewhere in the middle and stepping through from there. You can do

this by approximating where the program code breaks and setting a

stopping point (or breakpoint) at that line. Once a breakpoint has been

set, start your program. The MATLAB Editor/Debugger window will show a

green arrow pointing to the next line to execute. From this point, you can

examine any values passed into the program, or the results of each

operation performed. You can step through the program line by line to see

which path is taken and why. You can step into any functions that your

program calls, or choose to step over them and just see the end results.

You can also modify the values assigned to a variable and see how that

affects the outcome.

When the program is in debug-mode, the command prompt is changed to

“K>>” and the following message appears in the status bar:

33 Debugging in MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Your code could look something like this:

 A red circle indicates that you have set a breakpoint, which means

your program will stop at this place in your code and wait for further

instructions from you.

 The green arrow indicates at what line your program is at the

moment.

Now you can use the “debugging toolbar” to step through your code:

The “debugging toolbar” contains the following buttons:

 Set/Clear Breakpoint

 Clear all Breakpoints

 Step through the program, line by line

 Step in (to a function, etc.)

 Step out (of a function, etc.)

 Continue

 Exit Debug mode

Task 4: Debugging

Create a similar program like this:

34 Debugging in MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Set a Breakpoint inside the loop and use the Debugging functionality to

step through the program and watch the result in each iteration.

Test all the different buttons in the “debugging toolbar”:

In addition you should open some of your previous programs you have

made, and try the debugging tools on them.

[End of Task]

35

4 More about Functions

4.1 Getting the Input and Output

Arguments

A function may have several inputs and several outputs. Use nargin and

nargout to determine the number of input and output arguments in a

particular function call. Use nargchk and nargoutchk to verify that your

function is called with the required number of input and output

arguments.

Example:

We create the following function:

function [x,y] = myfunc(a,b,c,d)

disp(nargchk(2,4,nargin)) % Allow 2 to 4 inputs

disp(nargoutchk(0,2,nargout)) % Allow 0 to 2 outputs

x = a + b;

y = a * b;

if nargin == 3

 x = a + b + c;

 y = a * b * c;

end

if nargin == 4

 x = a + b + c + d;

 y = a * b * c * d;

end

We test the function in the Command window with different inputs and

outputs:

>> [x, y] = myfunc(1,2)

x =

 3

y =

 2

36 More about Functions

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

>> [x, y] = myfunc(1,2,3)

x =

 6

y =

 6

>> [x, y] = myfunc(1,2,3,4)

x =

 10

y =

 24

>> [x] = myfunc(1,2)

x =

 3

>> [x, y, z] = myfunc(1,2)

??? Error using ==> myfunc

Too many output arguments.

>> myfunc(1,2)

ans =

 3

>>

Note! In newer versions of MATLAB, the error function is recommended

instead of the disp function, but both should work.

[End of Example]

Task 5: Create a Function

You may have experienced standing on top of a hill or mountain, and it

feels you can see everything. How far can you really see? It depends on

the height of the mountain and the radius of the earth, as shown in the

sketch below.

37 More about Functions

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

In this task we will create a function that finds the distance to the

horizon 𝑥ℎ.

You may use the Pythagorean law to find 𝑥ℎ:

𝑅2 = 𝑥ℎ
2 = (𝑅 + ℎ)2 ⇔ 𝑥ℎ = √ℎ(2𝑅 + ℎ)

𝐷 is the diameter of the earth, 𝑅 is the radius of the earth, ℎ is your

height above the earth, where you are standing on a mountain. The radius

on the earth is 𝑅 = 6378𝑘𝑚.

→ Create a function that finds xh from input parameter h,

>>xh=horizon(h)

How far can you see if you are on top of the Mount Everest?

Make sure the function may handle vector inputs and create a help text

for the function that describes what the function is doing.

→ Create a script where you use the function to plot h vs. xh where h is a

vector from 1 to 8000 meters. Create labels, title and a legend in the plot.

[End of Task]

Task 6: Optional Inputs: Using nargin and nargchk

38 More about Functions

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

The distance to the horizon is quite different on the moon than on the

earth because the radius is different for each.

→ Extend your function so that R could be an optional input to the

function, e.g.:

>>xh=horizon(h,R)

If xh=horizon(h)is used, R is assumed to be R=6378km (the earth).

→ Use nargin to solve the problem. Use also nargchk to validate the

number of inputs.

How far could you see if the moon had a mountain similar to Mount

Everest? The radius on the moon is 𝑅 = 1737𝑘𝑚.

[End of Task]

Task 7: Optional Outputs: Using nargout and

nargoutchk

Let say we also may want to find the angle (a) between radius to the

horizon and the observer (you are standing on top of the mountain). See

the illustration above.

→ Extend your function so that the angle 𝒂 could be an optional

output from the function, e.g.:

>>[xh,a]=horizon(h,R)

If xh=horizon(h,R) is used, a should be ignored (only xh is calculated).

→ Use nargout to solve the problem. Use also nargoutchk to validate

the number of outputs.

The angle 𝑎 is given by:

tan 𝑎 =
𝑥ℎ

𝑅
⇔ 𝑎 = atan (

𝑥ℎ

𝑅
)

Note! You have to convert from radians to degrees (2𝜋 = 360𝑜). Use your

function r2d which you created in a previous task.

[End of Task]

39

5 More about Plots

MATLAB have advance Plot functionality. We have already used the plot

functionality in MATLAB in a dozen of examples. In this chapter we will

learn more about the advanced plotting functionality that MATLAB offers.

5.1 LaTEX or TEX Commands

When using labels, legends, and titles in a plot you sometimes want use

more advanced labels, titles, legend such as:

“Solution of ∫ sin(𝑥) 𝑑𝑥
5

1
”

This is done by using LaTeX or TeX commands.

In LaTeX typesetting, mathematical expressions are bracketed by the $$

symbol. Using $ bracketing, indicates in-line math.

Example:

The MATLAB code:

legend({'$$\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}$$'},

'Interpreter', 'LaTeX')

title({'Equation: $\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}$'},

'Interpreter', 'LaTeX')

gives the following plot:

40 More about Plots

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

[End of Example]

See Appendix B: Mathematics characters.

Task 8: LATEX Commands

Use MATLAB to create the following plot:

[End of Task]

Task 9: 3D Plot

Use your xh=horizon(h,R) from a previous task to create a mesh plot

where you plot xh for different values of h and R respectively.

Tip! Call the function in nested For Loops for different values for h and R

respectively.

41 More about Plots

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

[End of Task]

42

6 Using Cells in the

MATLAB Editor

You may structure MATLAB code in the editor by defining text cells. A text cell

is initiated by putting the symbol %% (double % character) in the first

position of a line. The cell ends on the line preceding the next %% symbol.

After the %% symbol, a space should be inserted, followed by a

descriptive text. The MATLAB Editor marks a cell by framing it with a

yellow box: when you put the cursor in a cell, the frame is shown. In

order for this to work, the Cell Mode must have been Enabled, see the Cell

menu of the MATLAB editor.

Below we see an example:

43 Using Cells in the MATLAB Editor

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

The Cells Toolbar in the Editor:

Why Use Cells?

M-files often have a natural structure consisting of multiple sections.

Especially for larger files, you typically focus efforts on a single section at

a time, working with the code in just that section. Similarly, when

conveying information about your M-files to others, often you describe the

sections of the code. To facilitate these processes, use M-file cells, where

cell means a section of code. Specifically, MATLAB uses cells for Rapid

code iteration in the Editor/Debugger — this makes the experimental

phase of your work with M-file scripts easier.

Task 10: Using Cells

Use one of your previous scripts and divide your code into different cells.

Run the different Cells individually.

Use the Cells tools to browse between the different Cells in your script.

[End of Task]

44

7 Importing Data

It is often needed to import data into MATLAB for analysis and

calculations, it could be data in a spreadsheet or logged data from a DAQ

device that you want to analyze. MATLAB have powerful tools for both

importing and exporting data.

Given an Excel file:

To open the Import Wizard, use File → Import Data …:

Or in newer versions of MATLAB:

45 Importing Data

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

A File dialog appears:

Select, e.g., a Excel Spreadsheet File, and the Import Wizard appears:

Clicking Finish and the data from the Excel file will be available in

MATLAB:

46 Importing Data

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

 Before you start, you should watch the video “Importing Data from

Files”.

The video is available from:

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3

.php

Task 11: Import Data

Create a spreadsheet file with some data (or use an existing spreadsheet

with data if you have) and import the data into MATLAB.

Plot the data in MATLAB.

[End of Task]

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3.php
https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3.php

47

8 Structures and Cell

Arrays

Historically, the matrix was the only data type in MATLAB. Vectors and

scalars are special cases of the general matrix. Now some new and

important data structures have arrived. One is the multi-dimensional

array, which just extends the matrix to more than two dimensions. More

important are the structure and the cell array.

In this chapter we will use these new data structures.

 Before you start, you should watch the video “Introducing

Structures and Cell Arrays”

The video is available from:

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3

.php

8.1 Structures

A structure is a data structure that can hold diverse data types, not

necessarily numbers, and with named data containers called fields, similar to a

record with fields in a database.

Example:

>>tank.height = 0.4;

>>tank.diameter = 0.5;

>>tank.type = 'cylinder';

>>tank

tank = height: 0.4000

 diameter: 0.5000

 type: 'cylinder'

[End of Example]

https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3.php
https://www.halvorsen.blog/documents/teaching/courses/matlab/matlab3.php

48 Error! Reference source not

found.

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Task 12: Using Structures

Create a function that calculates the volume of different objects, such as a

cylinder, a sphere, etc.

Use Structures to solve the problem.

[End of Task]

49

9 Alternatives to

MATLAB

Here are some other alternatives to MATLAB worth mention:

• Octave

• Scilab and Scicos

• LabVIEW MathScript

• LabVIEW

• Python

9.1 Octave

Octave is a free software tool for numerical analysis and visualization. The

function and command syntax are very similar to MATLAB. Many

contributed functions packages (like the toolboxes in MATLAB) are

available. They cover control theory, signal processing, simulation,

statistics etc. They are installed automatically when you install Octave.

There is no SIMULINK-like tool in Octave, but there are many simulation

functions (as in Control System Toolbox in MATLAB).

• Read more about Octave on their Homepage:

http://www.gnu.org/software/octave/

• Read more about Octave on Wikipedia:

http://en.wikipedia.org/wiki/GNU_Octave

9.2 Scilab and Scicos

Scilab is a free scientific software package for numerical computations

providing a powerful open computing environment for engineering and

scientific applications.

http://www.gnu.org/software/octave/
http://en.wikipedia.org/wiki/GNU_Octave

50 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Scilab is an open-source software. Since 1994 it has been distributed

freely along with the source code via the Internet. It is currently used in

educational and industrial environments around the world.

Scilab is quite like MATLAB, and the range of functions are comparable.

Octave is more like MATLAB than to Scilab. One problem with Octave has

been that data plotting is more cumbersome in Octave than in Scilab.

One nice thing about Scilab is that you get Scicos automatically installed

when you install Scilab. Scicos is a block-diagram based simulation tool

like Simulink and LabVIEW Simulation Module.

• Read more about Scilab on their Homepage: http://www.scilab.org/

• Read more about Scilab on Wikipedia:

http://en.wikipedia.org/wiki/Scilab

9.3 LabVIEW MathScript

MathScript is a high-level, text- based programming language. MathScript

includes more than 800 built-in functions and the syntax is similar to

MATLAB. You may also create custom-made m-file like you do in MATLAB.

MathScript is an add-on module to LabVIEW but you don’t need to know

LabVIEW programming in order to use MathScript.

For more information about MathScript, please read the Tutorial “LabVIEW

MathScript”.

MathScript is an add-on module to LabVIEW but you don’t need to know

LabVIEW programming in order to use MathScript.

http://www.scilab.org/
http://en.wikipedia.org/wiki/Scilab
http://home.hit.no/~hansha/?tutorial=mathscript
http://home.hit.no/~hansha/?tutorial=mathscript

51 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

For more information about MathScript, please read the Tutorial “LabVIEW

MathScript”.

9.3.1 How do you start using

MathScript?

You need to install LabVIEW and the LabVIEW MathScript RT Module.

When necessary software is installed, start MathScript by open LabVIEW:

http://home.hit.no/~hansha/?tutorial=mathscript
http://home.hit.no/~hansha/?tutorial=mathscript
http://home.hit.no/~hansha/documents/software/LabVIEW.htm
http://home.hit.no/~hansha/documents/software/LabVIEW%20MathScript%20RT%20Module.htm

52 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

In the Getting Started window, select Tools -> MathScript Window...:

9.3.2 Functions

The figure below illustrates how to create and use functions in MathScript:

53 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

9.3.3 ODE Solvers in MathScript

MathScript also offers some ODE solvers, not as many as MATLAB and

other names, but the principle is quite the same.

Below we see a list with available ODE solvers:

Below we see the description for the ode_rk23 function:

54 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

9.4 LabVIEW

LabVIEW is a graphical programming language, and it is well suited for

Control and Simulation applications.

In this chapter we will use LabVIEW to create a block diagram model and

simulate it, similar to what we have done in Simulink.

9.4.1 The LabVIEW Environment

LabVIEW programs are called Virtual Instruments, or VIs, because their

appearance and operation imitate physical instruments, such as

55 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

oscilloscopes and multimeters. LabVIEW contains a comprehensive set of

tools for acquiring analyzing, displaying, and storing data, as well as tools

to help you troubleshoot your code.

When opening LabVIEW, you first come to the “Getting Started” window.

In order to create a new VI, select “Blank VI” or in order to create a new

LabVIEW project, select “Empty project”.

When you open a blank VI, an untitled front panel window appears. This

window displays the front panel and is one of the two LabVIEW windows

you use to build a VI. The other window contains the block diagram. The

sections below describe the front panel and the block diagram.

9.4.2 Front Panel

When you have created a new VI or selected an existing VI, the Front

Panel and the Block Diagram for that specific VI will appear.

56 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

In LabVIEW, you build a user interface, or front panel, with controls and

indicators. Controls are knobs, push buttons, dials, and other input

devices. Indicators are graphs, LEDs, and other displays.

You build the front panel with controls and indicators, which are the

interactive input and output terminals of the VI, respectively. Controls are

knobs, push buttons, dials, and other input devices. Indicators are graphs,

LEDs, and other displays. Controls simulate instrument input devices and

supply data to the block diagram of the VI. Indicators simulate instrument

output devices and display data the block diagram acquires or generates.

E.g., a “Numeric” can either be a “Numeric Control” or a “Numeric

Indicator”, as seen below.

I you select a “Numeric Control”, it can easy be changed to an “Numeric

Indicator” by right click on the object an select “Change to Indicator”

57 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Or opposite, I you select a “Numeric Indicator”, it can easy be changed to

an “Numeric Control” by right click on the object an select “Change to

Control”

The difference between a “Numeric Control” and a “Numeric Indicator” is

that for a “Numeric Control” you may enter a value, while the “Numeric

Indicator” is read-only, i.e., you may only read the value, not change it.

58 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

The appearance is also slightly different, the “Numeric Control” has an

increment and an decrement button in front, while the “Numeric Indicator”

has a darker background color in order to indicate that its read-only.

9.4.3 Block Diagram

After you build the user interface, you add code using VIs and structures

to control the front panel objects. The block diagram contains this code. In

some ways, the block diagram resembles a flowchart.

After you build the front panel, you add code using graphical

representations of functions to control the front panel objects. The block

diagram contains this graphical source code. Front panel objects appear as

59 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

terminals, on the block diagram. Block diagram objects include terminals,

subVIs, functions, constants, structures, and wires, which transfer data

among other block diagram objects.

9.4.4 LabVIEW Control Design and

Simulation Module

In this chapter we will focus on how to create and simulate a model using

the “Simulation Loop” and the corresponding blocks available in

LabVIEW.

Below we see the Simulation palette in LabVIEW with “Simulation Loop”

and the corresponding blocks available:

In the “Simulation” Sub palette we have the “Control and Simulation

Loop” which is very useful in simulations:

You must place all Simulation functions within a Control & Simulation Loop

or in a simulation subsystem. You also can place simulation subsystems

within a Control & Simulation Loop or another simulation subsystem, or

you can place simulation subsystems on a block diagram outside a Control

& Simulation Loop or run the simulation subsystems as stand-alone VIs.

60 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

The Control & Simulation Loop has an Input Node (upper left corner) and

an Output Node (upper right corner). Use the Input Node to configure

simulation parameters programmatically. You also can configure these

parameters interactively using the Configure Simulation Parameters dialog

box. Access this dialog box by double-clicking the Input Node or by right-

clicking the border and selecting Configure Simulation Parameters from

the shortcut menu.

In the “Continuous Linear Systems” Sub palette we have important

blocks for we will use when creating our model:

The most used blocks probably are Integrator, Transport Delay, State-

Space and Transfer Function.

When you place these blocks on the diagram you may double-click or

right-click and then select “Configuration…”

 Integrator - Integrates a continuous input signal using the ordinary

differential equation (ODE) solver you specify for the simulation.

61 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

 Transport Delay - Delays the input signal by the amount of time

you specify.

 Transfer Function - Implements a system model in transfer

function form. You define the system model by specifying the Numerator

and Denominator of the transfer function equation.

 State-Space - Implements a system model in state-space form. You

define the system model by specifying the input, output, state, and direct

transmission matrices.

The “Signal Arithmetic” Sub palette is also useful when creating a

simulation model:

Example:

Below we see an example of a simulation model using the Control and

Simulation Loop.

Notice the following:

62 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Click on the border of the simulation loop and select “Configure

Simulation Parameters…”

The following window appears (Configure Simulation Parameters):

In this window you set some Parameters regarding the simulation, some

important are:

63 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

• Final Time (s) – set how long the simulation should last. For an

infinite time set “Inf”.

• Enable Synchronized Timing - Specifies that you want to

synchronize the timing of the Control & Simulation Loop to a timing

source. To enable synchronization, place a checkmark in this

checkbox and then choose a timing source from the Source type list

box.

Click the Help button for more details.

You may also set some of these Parameters in the Block Diagram:

You may use the mouse to increase the numbers of Parameters and right-

click and select “Select Input”.

[End of Example]

9.5 Mathematics in LabVIEW

When it comes to mathematics and numerical techniques, LabVIEW offers

functionality similar to what exists in MATLAB.

Below we see the Mathematics palette in LabVIEW:

64 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Here we have functionality for:

• Basic math operations

• Linear Algebra

• Curve Fitting

• Interpolation

• Integration and Differentiation

• Statistics

• Optimization

• Differential Equations (ODEs)

• Polynomials

• MATLAB integration (MATLAB Script)

• etc.

Below we will take a closer look at some of these functions.

9.5.1 Basic Math

LabVIEW have lots of functionality for basic math operations,

trigonometric functions, etc.

Numeric Palette in LabVIEW:

Below we see the Numeric palette in LabVIEW:

65 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Here we have basic math functions, such as Add, Subtract, Multiply,

Divide, etc.

Example:

Below we see a simple example using the basic math features:

Block Diagram: Front Panel:

[End of Example]

9.5.2 Linear Algebra

LABVIEW have lots of VIs (functions) for Linear Algebra. Below we see the

Linear Algebra palette in LabVIEW:

Linear Algebra Palette in LabVIEW:

66 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

In LabVIEW is a matrix defined as a 2-dimensional array, while a vector is

defined as a 1 dimensional array, see Figure below:

9.5.3 Curve Fitting

LabVIEW offers lots of functionality for Curve Fitting.

Fitting palette in LabVIEW:

67 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

9.5.4 Interpolation

LabVIEW offers lots of functionality for Interpolation.

Interpolation & Extrapolation palette in LabVIEW:

9.5.5 Integration and Differentiation

LabVIEW offers lots of functionality for numerical integration and

differentiation.

Integration and Differentiation palette in LabVIEW:

68 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

9.5.6 Statistics

LabVIEW offers lots of functionality for Statistics, including basic

functionality for finding mean, median, standard deviation, etc.

Probability and Statistics palette in LabVIEW:

9.5.7 Optimization

LabVIEW offers lots of functionality for Optimization.

Optimization palette in LabVIEW:

69 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

9.5.8 Differential Equations (ODEs)

LabVIEW offers lots of functionality for solving Differential Equations.

Ordinary Differential Equations palette in LabVIEW:

9.5.9 Polynomials

LabVIEW offers lots of functionality for creating and manipulating

Polynomials.

Polynomial palette in LabVIEW:

70 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

9.6 MATLAB Integration (MATLAB

Script) in LabVIEW

It is possible to integrate MathScript code in LabVIEW, which has similar

syntax as MATLAB (see previous chapter about MathScript). In addition,

there is also possible to integrate MATLAB code directly using something

called the “MATLAB Script”.

The “MATLAB Script” calls the MATLAB software to execute scripts. You

must have a licensed copy of the MATLAB software version 6.5 or later

installed on your computer to use MATLAB script nodes because the script

nodes invoke the MATLAB software script server to execute scripts written

in the MATLAB language syntax. Because LabVIEW uses ActiveX

technology to implement MATLAB script nodes, they are available only on

Windows.

Example:

Block Diagram: Front Panel:

71 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

The MATLAB Script Node is found in the Mathematics palette (Mathematics

→ Scripts & Formulas → Script Nodes):

9.7 Python

Python is a widely used high-level, general-purpose, interpreted, dynamic

programming language.

You can install a basic Python IDE from www.python.org.

For more MATLAB look and feel the Anaconda Python distribution is

recommended (with all major Scientific packages included, such as

NumPy, SciPy, Matplotlib...).

The Spyder IDE is also included (which has much more features than the

basic IDE).

I have written the following Python textbooks:

http://www.python.org/

72 Alternatives to MATLAB

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

Python Programming: This is a textbook in Python Programming with

lots of Practical Examples and Exercises. You will learn the necessary

foundation for basic programming with focus on Python.

Python for Science and Engineering: This is a textbook in Python

Programming with lots of Examples, Exercises, and Practical Applications

within Mathematics, Simulations, etc. The focus is on numerical

calculations in mathematics and engineering. Necessary theory is

presented in addition to many practical examples.

Python Programming Python for Science and Engineering

These textbooks can be downloaded for free. These textbooks have many

of the same examples and exercises you find in the MATLAB textbooks.

For more information, please see the following:

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

73

Appendix A –

MathScript Functions

Here are some descriptions for the most used MathScript functions used in

this course.

Function Description Example

plot Generates a plot. plot(y) plots the columns of
y against the indexes of the columns.

>X = [0:0.01:1];

>Y = X.*X;

>plot(X, Y)

tf Creates system model in transfer function
form. You also can use this function to state-
space models to transfer function form.

>num=[1];

>den=[1, 1, 1];

>H = tf(num, den)

poles Returns the locations of the closed-loop poles

of a system model.

>num=[1]

>den=[1,1]

>H=tf(num,den)

>poles(H)

tfinfo Returns information about a transfer function

system model.

>[num, den, delay, Ts] =

tfinfo(SysInTF)

step Creates a step response plot of the system
model. You also can use this function to return

the step response of the model outputs. If the
model is in state-space form, you also can use
this function to return the step response of the

model states. This function assumes the initial
model states are zero. If you do not specify an

output, this function creates a plot.

>num=[1,1];

>den=[1,-1,3];

>H=tf(num,den);

>t=[0:0.01:10];

>step(H,t);

lsim Creates the linear simulation plot of a system
model. This function calculates the output of a

system model when a set of inputs excite the
model, using discrete simulation. If you do not
specify an output, this function creates a plot.

>t = [0:0.1:10]

>u = sin(0.1*pi*t)'

>lsim(SysIn, u, t)

Sys_order1 Constructs the components of a first-order

system model based on a gain, time constant,
and delay that you specify. You can use this

function to create either a state-space model
or a transfer function model, depending on the
output parameters you specify.

>K = 1;

>tau = 1;

>H = sys_order1(K, tau)

Sys_order2 Constructs the components of a second-order
system model based on a damping ratio and
natural frequency you specify. You can use

this function to create either a state-space
model or a transfer function model, depending
on the output parameters you specify.

>dr = 0.5

>wn = 20

>[num, den] = sys_order2(wn,

dr)

>SysTF = tf(num, den)

>[A, B, C, D] = sys_order2(wn,

dr)

>SysSS = ss(A, B, C, D)

damp Returns the damping ratios and natural
frequencies of the poles of a system model.

>[dr, wn, p] = damp(SysIn)

pid Constructs a proportional-integral-derivative

(PID) controller model in either parallel,
series, or academic form. Refer to the
LabVIEW Control Design User Manual for

information about these three forms.

>Kc = 0.5;

>Ti = 0.25;

>SysOutTF = pid(Kc, Ti,

'academic');

74 Appendix A – MathScript Functions

MATLAB Course - Part III: Simulink and Advanced Topics in MATLAB

conv Computes the convolution of two vectors or

matrices.

>C1 = [1, 2, 3];

>C2 = [3, 4];

>C = conv(C1, C2)

series Connects two system models in series to

produce a model SysSer with input and output
connections you specify

>Hseries = series(H1,H2)

feedback Connects two system models together to

produce a closed-loop model using negative or
positive feedback connections

>SysClosed = feedback(SysIn_1,

SysIn_2)

ss Constructs a model in state-space form. You

also can use this function to convert transfer
function models to state-space form.

>A = eye(2)

>B = [0; 1]

>C = B'

>SysOutSS = ss(A, B, C)

ssinfo Returns information about a state-space
system model.

>A = [1, 1; -1, 2]

>B = [1, 2]'

>C = [2, 1]

>D = 0

>SysInSS = ss(A, B, C, D)

>[A, B, C, D, Ts] =

ssinfo(SysInSS)

pade Incorporates time delays into a system model
using the Pade approximation method, which

converts all residuals. You must specify the
delay using the set function. You also can use

this function to calculate coefficients of
numerator and denominator polynomial
functions with a specified delay.

>[num, den] = pade(delay,

order)

>[A, B, C, D] = pade(delay,

order)

bode Creates the Bode magnitude and Bode phase

plots of a system model. You also can use this
function to return the magnitude and phase

values of a model at frequencies you specify.
If you do not specify an output, this function
creates a plot.

>num=[4];

>den=[2, 1];

>H = tf(num, den)

>bode(H)

bodemag Creates the Bode magnitude plot of a system
model. If you do not specify an output, this
function creates a plot.

>[mag, wout] = bodemag(SysIn)

>[mag, wout] = bodemag(SysIn,

[wmin wmax])

>[mag, wout] = bodemag(SysIn,

wlist)

margin Calculates and/or plots the smallest gain and

phase margins of a single-input single-output
(SISO) system model. The gain margin

indicates where the frequency response
crosses at 0 decibels. The phase margin
indicates where the frequency response

crosses -180 degrees. Use the margins
function to return all gain and phase margins

of a SISO model.

>num = [1]

>den = [1, 5, 6]

>H = tf(num, den)

margin(H)

margins Calculates all gain and phase margins of a
single-input single-output (SISO) system
model. The gain margins indicate where the

frequency response crosses at 0 decibels. The
phase margins indicate where the frequency

response crosses -180 degrees. Use the
margin function to return only the smallest
gain and phase margins of a SISO model.

>[gmf, gm, pmf, pm] =

margins(H)

For more details about these functions, type “help cdt” to get an

overview of all the functions used for Control Design and Simulation. For

detailed help about one specific function, type “help <function_name>”.

Plots functions: Here are some useful functions for creating plots: plot,

figure, subplot, grid, axis, title, xlabel, ylabel, semilogx – for more

information about the plots function, type “help plots”.

75

Appendix B:

Mathematics characters

Hans-Petter Halvorsen

E-mail: hans.p.halvorsen@usn.no

Blog: http://www.halvorsen.blog

University of South-Eastern Norway

www.usn.no

mailto:hans.p.halvorsen@usn.no
http://www.halvorsen.blog/
http://www.usn.no/

Simulink and Advanced
Topics in MATLAB

	Preface
	Table of Contents
	1 Introduction
	2 Simulink
	2.1 Start using Simulink
	2.1.1 Block Libraries
	2.1.2 Create a new Model

	2.2 Wiring techniques
	2.3 Help Window
	2.4 Configuration
	2.5 Examples
	Task 1: Simulation in Simulink – Bacteria Population

	2.6 Data-driven Modelling
	2.6.1 Using the Command window
	2.6.2 Using a m-file
	2.6.3 Simulation Commands
	Task 2: Mass-Spring-Damper System
	Task 3: Simulink Simulation

	3 Debugging in MATLAB
	3.1 The Debugging Process
	Task 4: Debugging

	4 More about Functions
	4.1 Getting the Input and Output Arguments
	Task 5: Create a Function
	Task 6: Optional Inputs: Using nargin and nargchk
	Task 7: Optional Outputs: Using nargout and nargoutchk

	5 More about Plots
	5.1 LaTEX or TEX Commands
	Task 8: LATEX Commands
	Task 9: 3D Plot

	6 Using Cells in the MATLAB Editor
	Task 10: Using Cells

	7 Importing Data
	Task 11: Import Data

	8 Structures and Cell Arrays
	8.1 Structures
	Task 12: Using Structures

	9 Alternatives to MATLAB
	9.1 Octave
	9.2 Scilab and Scicos
	9.3 LabVIEW MathScript
	9.3.1 How do you start using MathScript?
	9.3.2 Functions
	9.3.3 ODE Solvers in MathScript

	9.4 LabVIEW
	9.4.1 The LabVIEW Environment
	9.4.2 Front Panel
	9.4.3 Block Diagram
	9.4.4 LabVIEW Control Design and Simulation Module

	9.5 Mathematics in LabVIEW
	9.5.1 Basic Math
	9.5.2 Linear Algebra
	9.5.3 Curve Fitting
	9.5.4 Interpolation
	9.5.5 Integration and Differentiation
	9.5.6 Statistics
	9.5.7 Optimization
	9.5.8 Differential Equations (ODEs)
	9.5.9 Polynomials

	9.6 MATLAB Integration (MATLAB Script) in LabVIEW
	9.7 Python

	Appendix A – MathScript Functions
	Appendix B: Mathematics characters

